Automatic Multi‐label Classification of Bridge Components and Defects Based on Inspection Photographs

نویسندگان

چکیده

Abstract When performing visual inspections of bridges, experts collect photographs defects to assess the overall condition structure and schedule maintenance plans. Such are labor‐intensive, computer vision‐based systems being investigated as automated tools assist in their inspections. An important aspect however remains ensure representativeness data accounting for sheer size, complexity variety bridge components reported. Here, we perform a multi‐label classification on dataset (SOFIA dataset) that consists 139,455 images types among which 53,805 labeled (13 classes each type). The containing class imbalance noisy labeling is processed using embedding computed from unsupervised deep learning methods. A combination class‐balancing techniques state‐of‐the‐art Vision Transformer model. Interclass relations, determine whether defect should be part component, implemented with an additional filtering step. whole method also deployed CODEBRIM benchmark resulting improved accuracy score.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

effect of seed priming and irrigation regimes on yield,yield components and quality of safflowers cultivars

این مطالعه در سال 1386-87 در آزمایشگاه و مزرعه پژوهشی دانشگاه صنعتی اصفهان به منظور تعیین مناسب ترین تیمار بذری و ارزیابی اثر پرایمینگ بر روی سه رقم گلرنگ تحت سه رژیم آبیاری انجام گرفت. برخی از مطالعات اثرات سودمند پرایمینگ بذر را بر روی گیاهان مختلف بررسی کرده اند اما در حال حاضر اطلاعات کمی در مورد خصوصیات مربوط به جوانه زنی، مراحل نموی، عملکرد و خصوصیات کمی و کیفی بذور تیمار شده ژنوتیپ های م...

Automatic Classification Of Digital Photographs Based On Decision Forests

Annotating photographs with broad semantic labels can be useful in both image processing and content-based image retrieval. We show here how low-level features can be related to semantic photo categories, such as indoor, outdoor and close-up, using decision forests consisting of trees constructed according to CART methodology. We also show how the results can be improved by introducing a reject...

متن کامل

On Multilabel Classification and Ranking

We present a novel multilabel/ranking algorithm working in partial information settings. The algorithm is based on 2nd-order descent methods, and relies on upper-confidence bounds to trade-off exploration and exploitation. We analyze this algorithm in a partial adversarial setting, where covariates can be adversarial, but multilabel probabilities are ruled by (generalized) linear models. We sho...

متن کامل

Efficient decomposition-based multiclass and multilabel classification

Decomposition-based methods are widely used for multiclass and multilabel classification. These approaches transform or reduce the original task to a set of smaller possibly simpler problems and allow thereby often to utilize many established learning algorithms, which are not amenable to the original task. Even for directly applicable learning algorithms, the combination with a decomposition-s...

متن کامل

Multilabel Subject-Based Classification of Poetry

Oftentimes, the question “what is this poem about?” has no trivial answer, regardless of length, style, author, or context in which the poem is found. We propose a simple system of multi-label classification of poems based on their subjects following the categories and subcategories as laid out by the Poetry Foundation. We make use of a model that combines the methodologies of tf-idf and Latent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ce/papers

سال: 2023

ISSN: ['2509-7075']

DOI: https://doi.org/10.1002/cepa.2072